N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors
نویسندگان
چکیده
A procedure for the fabrication of N-doped hollow carbon spheres with a high rate capability for supercapacitors has been developed. The approach is based on a nanocasting method and the use of a nitrogen-rich compound (pyrrole) as carbon precursor. The carbon particles thus produced combine a large BET surface area (~1500 m g) with a porosity made up of mesopores of ~ 4 nm and a high nitrogen content (~ 6 wt %) and a capsule morphology which entails short ion diffusion paths derived from the shell morphology (thickness ~ 60 nm). The porous properties of these hollow particles can be enhanced by means of an additional activation step with KOH. The activation process does not alter the hollow structure or spherical morphology, but strongly modifies the pore structure from a mesoporous network to a microporous one. The N-doped carbon capsules were tested in aqueous and organic electrolytes. In an aqueous medium (1 M H2SO4), the mesoporous carbon capsules offer the best performance due to the pseudocapacitive contribution of the N-groups, exhibiting a specific capacitance of ~ 240 F g at 0.1 A g and a capacitance retention as high as 72 % at 80 A g. On the contrary, in an organic electrolyte 2 (1 M TEABF4/AN), where the charge storage mechanism is based on the formation of the electric double-layer, the microporous capsules perform better due to the larger specific surface area. Thus, the microporous carbon capsules display a specific capacitance of up to 141 F g at 0.1 A g and an outstanding capacitance retention of 93 % for an ultra-high discharge current density of 100 A g.
منابع مشابه
Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملN-Doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors.
N-doped carbon spheres with hierarchical micropore-nanosheet networks (HPSCSs) were facilely fabricated by a one-step carbonization and activation process of N containing polymer spheres by KOH. With the synergy effect of the multiple structures, HPSCSs exhibit a very high specific capacitance of 407.9 F g(-1) at 1 mV s(-1) (1.2 times higher than that of porous carbon spheres) and a robust cycl...
متن کاملRecent Breakthroughs in Supercapacitors Boosted by Nitrogen‐Rich Porous Carbon Materials
Featured with unique mechanical, electronic and chemical properties, nitrogen-doped carbon materials have become the research hotspot of energy storage. As electrode materials in supercapacitors (SCs), N-doped carbons have demonstrated intriguing flexibility and superb performances in a wide electrochemical window, equipped with versatile properties as both cathodes and anodes for constructing ...
متن کاملNitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors
Nitrogen-doped banana peel-derived porous carbon foam (N-BPPCF) successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m²/g, large pore volume of 0.77 cm³/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functi...
متن کاملEnhanced Capacitive Performance of N-Doped Activated Carbon from Petroleum Coke by Combining Ammoxidation with KOH Activation
Low cost with high specific capacitance and energy density is the critical and main requirement for practical supercapacitors. A novel N-doped activated carbon was fabricated by KOH activation of petroleum coke and ammonia treatment. The as-prepared carbon exhibits a high specific surface area (1875 m(2) g(-1)), excellent conductivity (57 S m(-1)), and rich nitrogen level (4.0 wt%). Those outst...
متن کامل